Монтаж         26.06.2023   

Тепловизор своими руками. Тепловизор из фотоаппарата

К ПНВ можно отнести и Теплови́зор - устройство для наблюдения за распределением температуры исследуемой поверхности. Распределение температуры отображается на дисплее (или в памяти) тепловизора как цветовое поле, где определённой температуре соответствует определённый цвет. Как правило, на дисплее отображается диапазон температуры видимой в объектив поверхности. Типовое разрешение современных тепловизоров - 0,1 °C.

Принцип действия тепловизора идентичен ПНВ и основан на преобразовании инфракрасного излучения в электрический сигнал, который усиливается и воспроизводится на экране индикатора. В случае с мы фиксируем излучаемое объектом, а не отражённое излучение в ИК диапазоне.

Тепловизоры делятся на:

· Стационарные

Предназначены для применения на промышленных пре приятиях для контроля за технологическими процессами в температурном диапазоне от −40 до +2000 °C. Такие тепловизоры, зачастую имеют азотное охлаждение, для того, чтобы обеспечить нормальное функционирование приемной аппаратуры. Основу таких систем составляют, как правило, тепловизоры третьего поколения, собранные на матрицах полупроводниковых фотоприемников.

· Переносные

Новейшие разработки в области применения тепловизоров на базе неохлаждаемых микроболометров из кремния, позволило отказаться от использования дорогостоящей и громоздкой охлаждающей аппаратуры. Эти приборы обладают всеми достоинствами своих предшественников, таких как малый шаг измеряемой температуры (0,1 °C), при этом позволяют применять тепловизоры в сложных оценочных работах, когда простота использования и портативность играют очень большую роль. Большинство портативных тепловизоров имеют возможность подключения к стационарным компьютерам или ноутбукам для оперативной обработки поступающих данных.

Рисунок 131. Изображение на дисплее тепловизора.

Современные тепловизоры нашли широкое применение как на крупных промышленных предприятиях, где необходим тщательный контроль за тепловым состоянием объектов, так и в небольших организациях, занимающихся поиском неисправностей сетей различного назначения. Так, сканирование тепловизором может безошибочно показать место отхода контактов в системах электропроводки. Особенно широкое применение тепловизоры получили в строительстве при оценке теплоизоляционных свойств конструкций. Так, к примеру, с помощью тепловизора можно определить области наибольших теплопотерь в строящемся доме и сделать вывод о качестве применяемых строительных материалов и утеплителей. Тепловизоры также широко применяют в энергетике, металлургии, при строительстве дорог, судостроении, строительстве и эксплуатации железнодорожного полотна, метрополитене, автомобильной промышленности, ветеринарии, искусстве. Тепловизоры как и ПНВ все шире применяются вооруженными силами развитых государств для обнаружения теплоконтрастных целей (живой силы и техники) в любое время суток, несмотря на применяемые противником обычные средства оптической маскировки в видимом диапазоне (камуфляж). Из специализированного разведывательного прибора тепловизор стал важным элементом прицельных комплексов ударной армейской авиации (вертолетов) и бронетехники. Применяются и тепловизионные прицелы для ручного стрелкового оружия, хотя в силу высокой цены широкого распространения они пока не получили.

1

Применение тепловизора – это быстро расширяющаяся область с почти не ограниченным потенциалом. Любой объект во вселенной излучает энергию, причём большая часть энергии приходится на невидимое человеческому глазу инфракрасное излучение. Принцип работы тепловизора основан на этом явлении: по интенсивности инфракрасного излучения можно не только разделять объекты разной природы или даже участки однородной на вид поверхности, но и определить многие их скрытые свойства.

Зачем нужен тепловизор военным?

В наше время применение тепловизор нашёл во многих сферах, важнейшей из которых, естественно, стало военное дело. Какое основное применение тепловизор находит в армии?

Одним из важнейших препятствий для военных операций всегда была ночь. Не лучше обстоят дела в условиях плохой видимости: в тумане, дыму, при снегопаде и других подобных явлениях, когда привычным образом наблюдение невозможно. Ранее для обнаружения противника в темноте в армии использовали так называемые приборы ночного видения, с которыми часто путают тепловизор . Однако, принцип работы тепловизора даёт ему значительные преимущства. Дело в том, что ПНВ улавливает видимый свет и усиливает сигнал и, таким образом, позволяет видеть при плохом освещении. Но, в отличие от тепловизора, такой прибор абсолютно бесполезен при плохой видимости – он просто сделает туман ярче – да и в полной темноте, например, в помещении ПНВ не покажет абсолютно ничего.

Как работает тепловизор? Принцип работы тепловизора основан на регистрации теплового излучения. Прибор не требует никакой, даже минимальной подсветки для работы. А поскольку все объекты, так или иначе, излучают тепло, применение тепловизоров в военном деле трудно переоценить. Для нужд армии выпускаются тепловизоры в виде биноклей, монокуляров, прицелов для оружия, ими оснащают различное оборудование, системы наведения и многое другое, ведь формат прибора и применение тепловизора при решении специфических задач критически важно для такого тепловизора. Как правило, приборы, используемые военными, имеют самые современные матрицы с высоким разрешением, обеспечивающие наилучшее качество изображения и высокую частоту смены кадров. Другой важной особенностью таких тепловизоров является возможность работы на больших дистанциях, для чего они всегда оснащаются мощной оптикой.

И если раньше приборы этого класса были доступны только военным, сейчас всё большую популярность набирают так называемые тепловизоры для охоты, устройства, которые используют профессиональные охотники, а также сотрудники охранных служб, детективные агентства и пр. По своим характеристикам, возможностям и принципу работы тепловизор для гражданского использования немногим уступает аналогу из арсенала военных и помогает значительно сократить время поиска дичи, особенно если речь идёт о ночном выслеживании. Применение тепловизора для охоты не ограничивается собственно охотой – так, например, его возможности позволяют обнаружить движущийся автомобиль на дистанции больше километра. Как правило, гражданские тепловизоры этого класса выпускаются в форме монокуляров, биноклей и прицелов для охотничьего оружия.

Медицинские тепловизоры

Другим важным аспектом человеческой деятельности всегда была медицина. Применяются тепловизоры и здесь. Температура нашего тела – отличный показатель общего здоровья. Изменение температуры, как известно, сигнализирует о неполадках в работе организма, именно поэтому при первичном обследовании пациенту всегда ставят градусник. Но следует понимать, что обычный контактный термометр всегда измеряет температуру в одном и том же месте. Но на самом деле температура тела неоднородна, и для каждого органа характерна своя. Устройство тепловизора даёт возможность значительно углубить температурный анализ здоровья

Обследование тепловизором человека помогает найти область воспаления с точностью до мм и определить, например, патогенный процесс в одном из органов без внедрения различных зондов или оперативного вмешательства. Таким образом, применение тепловизора для диагностики не только даёт возможность определить, болен пациент или здоров, но и с высокой точностью указать источник проблемы и поставить диагноз. Основной областью применения таких приборов является диагностика опухолей и различных проблем с кровеносной системой.

Современный медицинский тепловизор – это, как правило, диагностическая система, состоящая из собственно детектора излучения и компьютера для быстрой обработки полученного сигнала. Одно из важнейших достоинств медицинского тепловизора является его полная безопасность для пациента в виду отсутствия постороннего излучения, оперативного вмешательства и – принцип работы тепловизора медицинского полностью аналогичен работе других приборов этого типа

Использование тепловизоров в промышленности и строительстве

Широкое применение тепловизоры нашли в химической промышленности и металлургии – области производства, в которых нередко используются высокотемпературные процессы, сложные системы охлаждения и агрегаты. На каждом крупном объекте регулярно проводится обследование тепловизором зданий, инфраструктуры и оборудования. Устройство помогает в решении множества задач и позволяет, например:

  • провести диагностику доменных печей;
  • теплоизоляции агрегатов;
  • проверить герметичность;
  • динамически контролировать температурные изменения в химическом реакторе.

Промышленный тепловизор – это всегда переносной прибор, как правило, выполненный в формате "пистолетной ручки". Устройство тепловизора этого типа рассчитано на сравнительно небольшую рабочую дистанцию, но оснащён матрицей с большим разрешением и работает в широком температурном диапазоне. Приборы этого класса рассчитаны на регулярное использование и позволяют на месте выявить неполадки в оборудовании при анализе теплового изображения на экране прибора.

Тепловизионные приборы широко применяются в энергетике, причём как на больших предприятиях, так и в работе электрика в ЖЭК. При их помощи проводится диагностика высоковольтных линий и вышек, как с земли, так и с воздуха, а обследование тепловизором трансформатора или электрощитка позволяет выявить и оперативно устранить многие неисправности.

В строительстве зданий применение тепловизоров, в основном, сводится к поиску слабых мест в теплоизоляции через обнаружение точек с перепадами температур.

На первый взгляд удивительно, но принцип работы тепловизора не редко бывает полезен и при строительстве дорог. Как и во многих других случаях, при укладке асфальтового покрытия необходим температурный контроль: каждый элемент - асфальт, смола, щебень - должен прогреваться до определённой температуры. Только контролируя температурный режим можно обеспечить надлежащее качество дорожного покрытия. К сожалению, в виду относительной новизны метода и стоимости оборудования, в России к тепловизионной диагностике прибегают только при строительстве крупных магистралей. Однако, такая диагностика вносит неоспоримый вклад в их качество.

Тепловизионная съёмка с воздуха

Особняком стоит тепловизионная аэрофотосъёмка, на больших площадях позволяющая выявлять очаги пожаров, в том числе и тлеющие без дыма. Это значительно упрощает работу службе МЧС. Кроме того, тепловизионная аэрофотосъёмка помогает выявить утечки на трубопроводах, экономя массу средств и времени транспортникам. Основное требование к приборам, применяемым для съёмки с воздуха, аналогично таковому и для других камер – это высокая разрешающая способность. Так же важен небольшой размер и вес камеры, если речь идёт о съёмке с беспилотного аппарата.

Как работает тепловизор в быту

Ещё совсем недавно тепловизоры как сложные и дорогостоящие приборы были доступны только военным и специалистам, но прогресс не стоит на месте, и совершенствование технологии производства сделало этот класс устройств весьма распространённым явлением в самых различных сферах, не исключая и бытовое применение.

Например, в последние годы набирает популярность обследование тепловизором помещения при покупке жилья или приёме недавно построенной дачи. Перед собой мы видим красивое помещение и мысленно представляем, как будем в нем жить. Но позже может оказаться, что квартира или дом совершенно не пригодна для комфортного проживания, поскольку в ней холодно зимой и очень жарко летом. Не лучше ли заблаговременно заказать и провести проверку помещения тепловизором? Таким образом, вы сможете понять насколько выгодную сделку вам предложили, тем более что с каждым годом применение тепловизора стоит всё меньше, а сами приборы становятся доступнее.

Впрочем, использование тепловизоров в быту не ограничивается недвижимостью. Так, многие автолюбители заказывают обследование тепловизором своего транспортного средства. С помощью устройства осуществляется поиск нарушения тепло- и гидроизоляции, контроль работы подшипников, сцеплений, валов, муфт, цепных приводов и воздушных компрессоров. Тепловизор помогает найти неполадку в работе автомобиля на ранней стадии, что позволяет избежать серьезной поломки и траты большой суммы денег на ремонт. Особенно это актуально, когда и сам автомобиль, и его ремонт стоят на порядок больше тепловизора.

Как правило, тепловизор для бытового применения оснащён матрицей с небольшим разрешением и имеет ограниченный набор функций, но внешне и по принципу работы напоминает промышленные приборы. Принцип работы тепловизора предельно прост в управлении и не требует никакой подготовки для использования. Однако, несмотря на относительно невысокую цену, такой прибор по-прежнему обладает большей частью достоинств, а применение тепловизора этого класса позволяет эффективно решать задачи теплового контроля в ЖКХ, авторемонтном деле, бытовом строительстве и пр.

1

Что такое тепловизор и для чего он нужен, как правильно выбрать тепловизор и на какие характеристики обращать внимание при покупке. Разновидности и в чём отличие от приборов ночного видения.

Что такое тепловизор?

Тепловизор - измерительный прибор, который позволяет видеть тепловое (инфракрасное) излучение окружающих объектов в любое время суток, измерять температуру в любой точке на поверхности с точностью 0,1°С и выше. Основное предназначение тепловизора - бесконтактное измерение температуры объектов живой и неживой природы, поиск неисправностей оборудования и электрики, недочётов строительства. Тепловизионные камеры создают чёткие тепловые изображения, основываясь на разнице температур. А сложные алгоритмы простых с виду камер считывают с этих изображений температурные значения. Самые горячие места окрашиваются в красный, жёлтый и оранжевый цвета, холодные в синий и чёрный.

Популярность тепловизоры обрели благодаря возможности применения во всех отраслях жизнедеятельности человека. Самые популярные области применения это строительство, охота, медицина и промышленность. Всё чаще тепловизоры используются и в быту для обследования квартир и частных домов, позволяют находить места утечек тепла и неполадки в электрике.

Принцип работы тепловизора

Принцип работы тепловизора основан на регистрации и анализе температур поверхности объектов. У каждого из материалов своя отражающая и поглощающая инфракрасное излучение способность. Неравномерность нагрева одной и той же поверхности позволяет формировать картину распределения температуры на ней, ассоциируя цвет на дисплее с температурой. При этом температурное разрешение составляет величину 0,05-0,1 градуса. Особенности спектрального диапазона 8-14 мкм и 3-5,5 мкм, в котором работают тепловизоры, таковы, что приземные слои атмосферы наиболее прозрачны для данной длины волны, при этом обеспечивается наибольшая дальность наблюдения объектов, излучающих в диапазоне температур от -50 до +500 градусов. В данном диапазоне частот наименьшие помехи от атмосферных явлений — туман, дождь, снег, дым.

Человеческий глаз видит очень маленькую часть электромагнитного спектра. Наши «детекторы» несовершенны, мы воспринимаем только видимый свет, инфракрасное излучение находится за пределами возможностей наших глаз. Видимый свет занимает диапазон длин волн электромагнитного излучении от 0,38 до 0,76 мкм, причем середина этого диапазона приходится на длину волны 0,55 мкм, которая соответствует максимуму солнечного излучения. Поскольку весь диапазон электромагнитного излучения простирается от ангстрем до сотен километров и фактически не ограничен ни «слева», ни «справа», человеческая цивилизация на протяжении своей технологической истории стремится освоить те диапазоны излучения, где глаз человека бессилен.

ИК-излучение находится в диапазоне между видимым светом и СВЧ- диапазоном электромагнитного спектра. Инфракрасное (ИК) излучение занимает диапазон длин волн от 0,76 до 1000 мкм. Основным источником инфракрасного излучения является тепло или тепловое излучение. Любой предмет с температурой выше абсолютного нуля (-273,15 °C или 0 градусов Кельвина) испускает излучение в ИК-области. Даже объекты, которые нам кажутся очень холодными, такие как кубики льда, испускают ИК-лучи. Иными словами, если бы глаз человека видел в ИК диапазоне, то мы могли бы оценивать температуру объектов, не прикасаясь к ним.

Тепло солнечных лучей, костер или радиатор отопления - все это ИК-излучение. Хотя глаза его не видят, наша подкожная нервная система ощущает это излучение как тепло. Чем теплее объект, тем больше ИК-излучение он испускает. Инфракрасное излучение, исходящее от объекта, фокусируется объективом тепловизора на инфракрасном детекторе. Этот детектор передает сигнал в электронный блок для обработки изображения. Электронный блок преобразует сигналы, поступающие от датчика, в тепловизионное изображение, которое отображается в видоискателе, на стандартном мониторе или ЖК-дисплее. А за счёт преобразования инфракрасного изображения в радиометрическое, считываются температурные значения с тепловизионного изображения.

Интересный факт

Инфракрасное зрение животных

Человек многое «подсмотрел» у природы, создавая свои приборы и механизмы. В живой природе существуют естественные аналоги тепловизоров. Специальные органы, улавливающие тепловое излучение, имеются у ряда животных. Например, змеи используют молекулярный алгоритм обработки данных о внешнем мире. Эта сенсорная система, называемая ямками, позволяют из всего многообразия теплых предметов, существующих в окружающем мире, выбирать только те, что движутся и представляют определенный интерес для пропитания. Строение такого органа довольно простое. Рядом с каждым глазом есть отверстие диаметром около миллиметра, которое ведет в небольшую полость такого же размера. На стенках полости расположена мембрана, содержащая матрицу из клеток-терморецепторов размером примерно 40 на 40 клеток. Эти клетки реагируют не на «яркость света» тепловых лучей, а на локальную температуру мембраны. Орган шестого чувства змеи работает как камера-обскура, прототип фотоаппаратов. Мелкое теплокровное животное на холодном фоне испускает во все стороны «тепловые лучи» — инфракрасное излучение с длиной волны примерно 10 микрон. Проходя через дырочку, лучи локально нагревают мембрану и создают «тепловое изображение». Благодаря высокой чувствительности клеток-рецепторов (детектируется разница температур в тысячные доли градуса Цельсия!) и неплохому угловому разрешению, змея может заметить мышь в абсолютной темноте с довольно большого расстояния. Другой вариант «теплового» зрения есть у глубоководных кальмаров. Помимо обычных глаз по нижней поверхности тела кальмара расположены особые органы, улавливающие инфракрасные лучи. Их устройство схоже с обычным глазом, которые при этом имеет дополнительный светофильтр, поглощающий все остальные лучи, кроме инфракрасных, и расположенный перед преломляющей линзой-хрусталиком.

Что может тепловизор?

В процессе тепловизионной диагностики, а также при выполнении энергоаудита, с помощью тепловизора выявляют места с аномальным отклонением температур, то есть чаще всего используют прибор в качестве индикатора. Большинство тепловизоров могут не только получать тепловизионные изображения объектов, но и определять поверхностную температуру в отдельных точках.

Выявляя «перегретые» элементы, тепловизор позволяет обнаруживать неправильно функционирующие узлы механических агрегатов, которые подвержены повышенному трению, дефекты контактных соединений, коммутационной аппаратуры и токопроводящих линий силового электрооборудования. В строительной сфере тепловизионная съемка используется для энергоаудита, проверки качества строительно-монтажных работ (в том числе для контроля правильности монтажа оконных блоков, теплоизоляции и пр.), поиска протечек и скрытых дефектов, выявления мест, где может появляться плесень, диагностики электросетей и коммутационного оборудования, проверки работы систем отопления и пр.

Классификация измерительных тепловизоров по применению:

  • для обследования электрооборудования и электрики;
  • для поиска утечек тепла-холода;
  • для поиска утечек газа/разливов нефти;
  • для контроля и автоматизации технологических процессов;
  • для научных исследований.

Основные характеристики и цена тепловизора

В наибольшей степени цена тепловизора зависит от разрешения ИК матрицы, температурного диапазона, дальности действия (большие германиевые объективы стоят дороже) и дополнительных измерительных функций. Самый недорогой тепловизор сегодня можно купить за 19000 рублей, за эту цену вы получите простой прибор, который подойдёт для повседневных нужд в быту. Самые дорогие модели - профессиональные тепловизоры с большой матрицей для энергоаудита, технической и промышленной диагностики стоят от миллиона и выше. Рассмотрим основные характеристики этих приборов.

Разрешение инфракрасного детектора - основная характеристика, определяющая функциональность конкретной модели и «результативность» термографирования. Самыми доступными по цене являются модели с разрешением 60х60, тепловизоры верхнего ценового диапазона имеют разрешение свыше 640х480. Важно не путать разрешение ИК-детектора с характеристиками встроенной камеры видимого диапазона и разрешением дисплея прибора.

Разрешение тепловизора - это количество отдельных «точек измерения» по горизонтали и вертикали, отображаемых на термограмме. Внешне похожие модели с одинаковым размером экрана, но с разным разрешением ИК-матрицы, в процессе съемки будут показывать похожие «картинки», однако при детальном рассмотрении термограммы на компьютере (или после распечатки полноформатного снимка) разница будет заметна - чтобы получить качество 120х120 при помощи тепловизора с разрешением 60х60 необходимо сделать 4 снимка с близкого расстояния.

В большинстве случаев базовые модели с низким разрешением используются для оперативной диагностики электромеханического оборудования, коммутационной и электросиловой аппаратуры, поиска протечек, определения источников теплопотерь в помещениях и т.п. С задачами энергоаудита зданий высотой до 5 этажей успешно справляются модели тепловизоров разрешением 120х120. Для тепловизионного обследования крупных объектов обычно используют модели с разрешением 320х240 (для зданий до 16 этажей) и 640х480.

Тепловизоры с высоким разрешением позволяют получать «за один раз» термограммы высокого качества, однако, даже имея модель более низкого класса (со «слабым» разрешением), можно получить такие же результаты, выполнив серию снимков и «сшив» их при помощи соответствующего программного обеспечения (некоторые приборы имеют специальную функцию панорамирования, которая упрощает эту задачу).

Дополнительная «оптика» (сменные объективы) позволяют расширить возможности тепловизора, выполняя тепловизионное обследование общего плана с использованием широкоугольного объектива, такая оптика удобна, если объект находится вплотную к оператору и следует просматривать как можно большую площадь (научные исследования, строительство и энергетика). Для детальных снимков удаленных объектов или отдельных элементов (например, верхних этажей зданий, опор ЛЭП, дымовых труб, ИК съемка с борта вертолета) - применяя телеобъектив.

Следует учитывать, что широкоугольные объективы увеличивают «угол зрения» прибора, а телеобъективы - сужают.

В профессиональных тепловизорах ИК объектив является сложным узлом, включающим набор линз и зеркал из хрупких, дорогостоящих и требующих прецизионной обработки материалов типа кремния, германия и специальных ИК стекол. Основными параметрами объективов, которые важны для потребителя, являются фокусное расстояние и угол зрения.

Температурный диапазон , в котором тепловизор может выполнять измерения, (или диапазон контролируемых температур) определяет сферу применения прибора. Для термографирования зданий вполне подойдут тепловизоры с верхним температурным диапазоном до +100°C, для диагностики электроустановок и промышленных агрегатов требуются приборы, способные выполнять измерения до +350°C, а для проверки котлов, теплогенераторов и пр. необходимы более «высокотемпературные» модели (до +650°C). В литейной, стекольной, химической промышленности, в энергетике, где температуры могут достигать до +1200°C (или выше) используются модели тепловизоров с соответствующим температурным диапазоном.

Выбирая тепловизор, конечно же, следует «оставлять» определенный «температурный запас», однако чрезмерно завышать требования к температурному диапазону не стоит - это неразумное расходование средств.

Чувствительность - это величина минимального температурного перепада, которую способен определять тепловизор. От этой характеристики зависит «контрастность» получаемого изображения. Для энергоаудита вполне достаточно чувствительности в 0,1°C. Для обнаружения «перегретых» узлов электросилового или механического оборудования могут использоваться и менее чувствительные модели. Повышенная чувствительность требуется для выявления участков с повышенной влажностью, протечек, скрытых дефектов и т.п.

Точность измерений (погрешность) . Почти все тепловизоры (с неохлаждаемой болометрической матрицей) обеспечивают точность измерений не ниже 2%, что вполне достаточно для решения большинства задач по диагностике и энергоаудиту. Более высокую точность обеспечивают модели с азотным охлаждением, которые чаще используются для научных исследований и при контроле технологических процессов.

Спектральный диапазон . Для выполнения большинства задач (например, по термографированию зданий) используют тепловизоры со спектральным диапазоном 7-14 микрон. Съемку зданий со сплошным остеклением обеспечивают модели со спектральным диапазоном 3-5 мкм (с охлаждаемой матрицей), которые позволяют определять поверхностную температуру стеклоподобных объектов и при этом не учитывают их отражающую способность.

Размер экрана тепловизора имеет значение при оперативном тепловизионном обследовании, когда нужно быстро и без ошибок выявить неисправность на месте. Для энергоаудита эта характеристика важна не в такой мере, ведь при составлении отчетов качество снимков определяется только разрешением ИК-датчика.

Дополнительные функции

Большинство тепловизоров (кроме бюджетных моделей) оснащаются встроенными видеокамерами с функцией сохранения изображения, благодаря чему имеется возможность наложения (полного или в режиме «картинка в картинке») изображений инфракрасного и видимого спектров. Модели верхнего ценового диапазона позволяют производить видеозапись.

Для более эффективной обработки результатов тепловизионной диагностики полезными оказываются функции аннотирования термограмм, а также их позиционирование (с использованием встроенного компаса или GPS). Для диагностики и выявления мест образования плесени оказываются востребованными функции температурной сигнализации и обнаружения участков с максимальными и минимальными температурными показателями.

Выбирая тепловизор, в обязательном порядке следует ознакомиться с возможностями программного обеспечения (если оно поставляется в комплекте с прибором), или же приобрести специальный софт отдельно.

Производители тепловизоров

Производителей тепловизоров с каждым годом становится всё больше, конкуренция растёт, появляются новые бренды, но не все они заслуживают внимания. Перечислим несколько брендов, которые вы смело можете покупать, не переживая за потраченные деньги. Инвестиции в надёжное и качественное оборудование окупятся.

Компания FLIR

Компания является одним из пионеров в разработке и производстве тепловизионной техники. Первая тепловизионная камера была продана в 1965 году компанией, которая впоследствии стала известна как FLIR Systems. Она была разработана для осмотра высоковольтных линий электропередачи. Компания FLIR прошла длительный путь развития и ведет свою историю от шведской фирмы AGEMA Infrared Systems (основана в 1958 г., тогда фирма AGA). Ее продукция - тепловизионные камеры более 60 лет работают по всему миру и используются в самых разных областях. Применяются для технической диагностики и задач обеспечения безопасности предприятий до проведения научных исследований и медицинской диагностики. В 1997 г. произошло расширение фирмы AGEMA Infrared Systems путем ее слияния с крупнейшими производителями ИК аппаратуры в США - фирмами FLIR и Inframetrics, так образована компания FLIR Systems. В 2004 г. в состав FLIR Systems вошла компания Indigo Systems - ведущая компания в области разработки детекторов и специализированного программного обеспечения (ПО). Сегодня объёмы производства компании FLIR занимают от 60 до 75% всего мирового рынка тепловизоров. А сами тепловизоры FLIR считаются одиними из лучших в мире. Именно с этих тепловизоров и начиналась история компании ПЕРГАМ, когда в 1996 году мы продали первый тепловизор FLIR в Москве.

Компания Fluke

Мировой лидер в производстве, продаже и обслуживании электронных измерительных приборов и программного обеспечения. Тепловизоры Fluke - это качественные, надёжные, безопасные и лёгкие в применении приборы, необходимые для инженерных и электрических работ, требующих высокой точности и качества измерений. Тепловизоры Fluke хорошо известны в России и востребованы среди профессионалов. Все камеры соответствуют стандартам Fluke по прочности, надежности и точности. Приборы предназначены для повседневного использования в любых условиях, для точных и обстоятельных обследований, качество и надёжность проверено временем и тысячами покупателей. Универсальные приборы базового уровня оснащены минимальным набором опций, матрицы от 120x120 до 160x120 пикселей, средняя цена от 100 до 150 т.р. Тепловизоры Флюк Professional Series или экспертной серии Expert Series позволяют получать изображения с разрешением 1024 × 768 пикселей на большом экране. Ассортимент моделей покрывает практически все потребности строительной и промышленной отраслей, а тепловизоры с детектором газа подойдут для применения в нефтегазовой сфере. С момента своего основания в 1948 г. компания Fluke принимала участие в развитии рынка технологий по тестированию и диагностике неисправностей. Эти направления особенно важны в производственных и обслуживающих отраслях. Каждое новое предприятие, офис, больница или завод - потенциальные потребители продукции Fluke.

Компания Testo

Известный во всём мире немецкий производитель контрольно-измерительного оборудования для систем вентиляции, кондиционирования, отопления, энергетики, нефтегазовой, строительной, фармацевтической, пищевой и других отраслей промышленности. История компании начинается с разработки первого медицинского термометра в 1957 году. В 2006 году компания открыла официальное представительство в Российской Федерации. С 2008 года тепловизоры Testo начинают завоёвывать рынок. Сегодня тепловизоры компании Тесто незаменимы для обнаружения утечек тепла в зданиях, поиска скрытых строительных дефектов. В промышленности и электрике они помогают диагностировать неисправности и вовремя предотвращать выход из строя оборудования. Компания testo предлагает широкий ассортимент современных тепловизионных камер для проведения тепловизионных обследований различных объектов, проведения энергоаудитов и диагностики состояния оборудования и НИОКР. Немецкая педантичность, точность и аккуратность стали залогом качества тепловизоров Testo, которые заняли свою нишу в области тепловизионного оборудования. Это действительно надёжные и качественные приборы, которые не ломаются и работают на совесть, они неприхотливы в обслуживании, адаптированы для применения в непростых российских условиях. По цене чуть дешевле аналогов от FLIR и Fluke. По качеству ничем не уступают, а брутальный дизайн выбран специально для того, чтобы подчеркнуть надёжность приборов.

Компания Guide Infrared

Единственный китайский разработчик и производитель тепловизионного оборудования, покрывающего все сферы применения. Компания основана в 1999 году, имеет собственные заводы и даже создала целы индустриальный парк Guide площадь которого ни много ни мало 133 400 квадратных метров. На территории парка расположены все производственные мощности компании, международный научно-исследовательский центр, симуляционная лаборатория и жилые комплексы для сотрудников. В ассортименте компании сотни продуктов: коммерческие системы тепловизионного видеонаблюдения, измерительные тепловизоры, правительственные тепловизионные системы, линзы ночного видения, тепловизионные модули, тепловизоры для пожарных, тепловизионные сетевые камеры, тепловизионные бинокли и монокуляры, системы ночного видения. Компания имеет сертификат ISO9001, сертифицирована в соответствии со стандартом CE и GJB9001A. Во всех подразделениях Wuhan Guide, включая не так давно открытую в Европе компанию EUNIR Systems NV (Бельгия), работает более 1500 сотрудников. На счету китайской компании Wuhan Guide более 40 государственных и международных патентов (в их числе «GuideIR», «MobIR» и «Thermo Pro», «EasIR»), 15 торговых марок и 9 авторских прав на программное обеспечение для тепловизоров. Тепловизоры Guide - практичные и надёжные приборы по адекватной цене с хорошим функционалом. Компания «ПЕРГАМ» является эксклюзивным дистрибьютором Wuhan Guide Infrared на территории Российской Федерации.

Бренд Pulsar

Бренд принадлежит компании Yukon Advanced Optics Worldwide. Тепловизоры, прицелы и монокуляры Pulsar пользуются огромным спросом у охотников во всём мире. Это одни из лучших приборов на рынке по потребительским качествам и цене. Компания Yukon Advanced Optics Worldwide основана в 1998 году на базе двух частных предприятий. Первое - производственное объединение в Республике Беларусь, которое с 1991 года занималось выпуском зрительных труб, второе - компания, занимающаяся продажей оптики, расположенная в штате Техас, США. На старте компания продавала дневные оптические наблюдательные приборы (зрительные трубы и бинокли) под маркой Yukon. Ассортимент рос, начали выцпускать приборы ночного видения и прицелы NVRS. Широкая линейка ПНВ и стала основой торговой марки компании - Pulsar. Сегодня Yukon Advanced Optics Worldwide - это крупнейший производитель наблюдательной оптики для гражданского рынка, в ассортименте компании: цифровые прицелы ночного видения, цифровые лазерные дальномеры, дневные оптические прицелы, тепловизионные приборы, ночные насадки на дневные прицелы, ифровые прицелы с лазерным дальномером, тепловизионные прицелы и насадки, бинокли и очки ночного видения. Компания представлена более чем в 70 странах мира.

Компания ПЕРГАМ

Компания «ПЕРГАМ» основана в 1996 году. Занимается поставкой и производством оборудования для технической и промышленной диагностики. Всё начиналось с продажи тепловизоров компании FLIR, за 22 года компания превратилась в одного из ведущих поставщиков большого ассортимента оборудования неразрушающего контроля. Наладили производство собственного оборудования под брендом ПЕРГАМ: сегодня мы производим тепловизоры для систем охранного наблюдения, медицинские тепловизоры и тепловизионные камеры для автомобилей, катеров и спецтехники. Производим гиростабилизированные тепловизионные системы для вертолётов и легкомоторных самолётов, телескопические мачты для коммуникаций и видеонаблюдения, мобильные быстровозводимые комплексы наблюдения, тепловизионные модули. Разработали уникальное оборудование для поиска утечек газа ДЛС-ПЕРГАМ. Занимаемся внедрением тепловизионных систем безопасности и видеонаблюдения. В нашем арсенале военные тепловизоры и профессиональные системы двойного назначения. Охрана государственных границ и важных коммерческих объектов, морских портов и аэропортов, специальные операции, наблюдение с воздуха, а также научные исследования и разработки — это лишь небольшая часть проектов, где используется наше оборудование.

Как выбрать тепловизор

Поскольку тепловизор - это универсальный прибор для измерения температуры и анализа тепловых полей, вы можете испытывать сильное искушение применить его для решения максимального числа измерительных и диагностических задач. Это первая мысль, от который вы должны избавиться при выборе камеры. При покупке тепловизора, первое, что следует чётко представлять - основные области его дальнейшего применения, второе - определиться с бюджетом.

Тепловизоры для охраны периметра

В отличие от измерительных, охранные тепловизоры не измеряют температуру объектов, у них другие задачи. Применение тепловизора в качестве «дальнобойного» и высокочувствительного прибора ночного видения потребует от вас приобретения длиннофокусной оптики, но не требуется функций измерения температуры. Охранный тепловизор должен давать чёткие изображения нарушителя на больших расстояниях при максимальном рабочем диапазоне температур, чтобы исключить ложные срабатывания охранных систем. Обращайте внимание на разрешение матрицы тепловизора, чем она больше, тем чётче картинка, но и дороже сам тепловизор. Вот наиболее подходящие модели и параметры тепловизоров для охраны периметра:

  • VOx – микроболометр на оксиде ванадия
  • α-Si – микроболометров на аморфном кремнии

Модели:

  • поворотная тепловизионная система с дальностью обнаружения человека до 3000 метров;
  • мультисенсорная система с разрешением 640 х 480 для охраны особо важных объектов;
  • гиростабилизированная оптико-электронная система видеонаблюдения на базе тепловизора с разрешением матрицы 640×512 пикселей;
  • охранный для установки во взрывоопасных зонах.

Простые недорогие тепловизоры до 100000 рублей

К простым недорогим приборам для повседневных нужд (тепловизионное обследование квартиры, дачи, дома, проверка электрики, поиск неисправностей в проводке автомобиля, тёплых полов и т.д.) можно отнести модели:

  • миниатюрный тепловизор для смартфона с матрицей 160х120 пикселей;
  • влагомер со встроенным тепловизионным модулем с матрицей 80х60;
  • - недорогой тепловизор для обследования электроники и электропроводки;
  • бюджетный с матрицей 160 x 120 пикселей для технического обслуживания и монтажных работах в строительстве и промышленности.

Тепловизоры для строительства и электрооборудования

Обследование тепловизором зданий и сооружений позволяет выявить утечки тепла в здании, в энергетике - найти причины неисправностей электрооборудования. Для ИК диагностики в строительстве и энергетике оптимальным выбором будут камеры с разрешением матрицы от 320 x 240 пикселей и функцией цифрового увеличения изображения, которая позволяет увидеть больше деталей и создавать термограммы с разрешением 640 x 480 и 1024 × 768 пикселей.

В условиях российского сурового климата важным параметром является диапазон рабочих температур окружающей среды, поскольку обследование строительных объектов чаще проводят в зимний период, когда разница температур в помещении и на улице максимальна. Очень часто температурные неоднородности слишком малы, величиной в несколько градусов, именно поэтому отопительный сезон - это идеальное время для обследования зданий. Чем больше перепад температур, тем проще обнаружить потери энергии. Перепад температур между внутренним и наружным воздухом при тепловизионном обследовании зданий должен быть не менее 10°C - 15°C. Чем выше перепад температур, тем точнее результаты обследования. Идеальные условия для тепловизионного обследования - это ясный безветренный вечер, температура в помещении +(20-25)⁰С, а внешняя температура - (0-10)⁰С или ниже. Если планируете обследовать дом или коммерческий объект в тёплое время года, когда перепад температур минимален, рекомендуем для создания дополнительного теплового напора. По данным министерства энергетики, устранение дефектов, обнаруженных при обследовании ограждающих конструкций зданий может сократить энергетические расходы минимум на 15%. Для энергоаудита зданий и предприятий подойдут модели:

  • FLIR T1020 - профессиональный с ик-матрицей 1024 × 768 пикселей;
  • - тепловизор с дальномером, съёмным объективом и встроенным GPS, матрица с разрешением 464 x 348 пикселей;
  • профессиональный измерительный с GPS и Wi-Fi, матрица 400×300 пикселей;
  • тепловизионная камера с матрицей 640×480, диапазон измерения температур от -20 до +2000ºC, большой выбор сменных объективов с чувствительностью F1.0 и F1.1;
  • тепловизор с матрицей 1024 × 768 пикселей, 32-кратным зумом, чувствительностью ≤ 0,05 °C;

Тепловизоры с каждым годом стремительно дешевеют, становятся доступны для широкого круга потребителей. Если раньше они стоили несколько десятков тысяч долларов и были доступны только для военных и крупных компаний, то сегодня самый . Если вам нужен измерительный или охранный тепловизор, пирометр со встроенным ИК-модулем, система видеонаблюдения на базе тепловизионных модулей с высоким разрешением, обращайтесь, поможем сделать правильный выбор.

Использование тепловизора для наглядного представления распределения температур по объекту применяется в различных сферах. Одним из самых известных методов его использования является . С ее помощью удается установить источники потери тепла на ограниченных участках, а так же на больших площадях. Она определяет такие источники как ошибки в теплоизоляции, тепловые мостики, недостаточная плотность изоляции, а также коэффициент звукоизоляции здания. При помощи современных тепловизоров можно самым точным образом установить истинное энергетическое состояние здания на данный момент.

Для расчета теплопроизводительности здания замеры предпочтительней проводить в холодное время года при работающей системе отопления и желательно при минимальной температуре окружающей среды. Термография зданий показывает распределение температуры в данный момент по поверхности определенной строительной конструкции, на которую влияют различные внешние факторы. Термография позволяет контролировать строительный процесс, анализировать ситуацию на участках, где возникли проблемы,и используется по большей части в таких сферах как анализ строительной конструкции, реставрация, а также строительство зданий.

Принцип работы тепловизора

Тепловизор - это прибор для измерения различия температур на определенном участке, не требующий никаких дополнительных действий и мероприятий. Любой предмет температурой выше нуля градусов передает электромагнитное излучение. Если вычислить интенсивность этого излучения, можно выяснить абсолютную температуру. Инфракрасный приемник излучения является сердцем тепловизора. Он может перевести колебания излученияв графическое изображение и высчитать по нему температуру.

Так возникает спектрозональная картина, отражающая реальное распределение температур по различным частям строительной конструкции. Это форма изложения обычно называется тепловым изображением или термограммой. Обычно цвета распределяют таким образом, что более светлые (красный, желтый) цвета показывают более высокую температуру, а более темные (синий, зеленый) - низкую. Если этот метод используется для экспертизы отапливаемого или наоборот остывающего здания, то он называется термография здания.

Предпосылки для использования тепловизора

Основной предпосылкой для использования тепловизора является изменение в поступлении теплового потока под воздействием перепада или температур. Этот тепловой поток, проходя по различным локальным зонам с различной температурой,показывает различные температуры поверхностей строительной детали, которые зафиксированы тепловизором. Современные тепловизоры способны показывать разницу в температурах вплоть до сотых градуса в тепловом потоке, а значит определить слабые места в постройке при разнице внутренней температуры в помещении и окружающей среды в 10 градусов. В то время как для более простых и старых моделей была необходима разница в температурах в 20 градусов для точного определения разницы в температурах в элементах конструкции. Поэтому разрешающая способность тепловизора играет решающую роль в его использовании в течение года.

Помимо разницы температур на тепловизор могут оказывать влияние ветер, дождь или солнце, под воздействием которых здание может нагреваться либо остывать, а это влияет на точность результата. Поэтому временной интервал для измерения тепловизором строго ограничен: это либо раннее утро, либо поздний вечер в безветренную сухую погоду.

Наряду с внутренними заданными или созданными условиями определяются условия, при которых проводятся термографические исследования.

Достоверные результаты можно получить при следующих условиях:

    измерения проводятся рано утром или поздно вечером.

    разница внутренней температуры помещения и температуры окружающей среды составляет 10-20 градусов.

    погода сухая и скорость ветра не превышает 2 м/с.

    во внутренних помещениях поддерживается равномерная температура (внутри здания двери открыты, окна закрыты).

    возможно учет изменения интенсивности работы системы отопления, если это заложено.

Возможности и границы использования тепловизоров на практике

Как правило, замеры тепловизором можно проводить как снаружи, так и внутри здания. Оба метода имеют свои плюсы и минусы. Обычно для выбора оптимального расположения тепловизора для снятия показаний учитываются конструкция здания иусловия окружающей среды. Так, например, дома, оснащенные радиаторами, принято снимать с наружной стороны здания.

Термография внешних фасадов


Как правило, термография проводится для быстрого и наглядного определения тепловых мостиков и вреда, нанесенного внешнему фасаду влажностью. Зачастую таким образом можно проанализировать всю внешнюю поверхность здания. Позиция для максимально точного замера в этом случае варьируется и может быть скорректирована специальной теле- или широкоугольной оптикой. Однако в этом случае полученные данные будут скупыми и могут содержать искажения. Также надо учитывать холодное излучение,которое может отражаться от крыш и окон здания. В этом случае термограмма может быть заметно холоднее, чем состояние здания на самом деле.

Коррекция коэффициента излучения

Количественный анализ распределения температур не учитывает коэффициент излучения и фоновое излучение. При этом неважно делается ли анализ камерой на месте или впоследствии обрабатывается специальным программным обеспечением.

Коэффициент излучения как мера исчисления для материала оказывает на точность результата большое влияние.Чем больше разница между температурой объекта и температурой окружающей среды (фоновое излучение), и чем меньше коэффициент излучения, тем больше будет ошибок, если не провести коррекцию. Количественный анализ внешних стен требует четкого соблюдения и сбора данных об определенных условиях окружающей среды, а также учета релевантных параметров физического излучения. Поэтому рекомендуется учитывать температуру излучения окружающей среды, где расположено здание.

Типичные ошибки в интерпретации снимка

На практике чаще всего неправильно интерпретируются данные, полученные при анализе внешней части здания. Так дилетант воспринимает термограмму как цветную картинку, а не как сложный процесс измерения, и, как правило, слепо рассматривает лишь температуру внешней поверхности, не учитывая внешние помехи и термические эффекты, влияющие на здание.

Вот типичные ошибки при интерпретации снимков:

    при измерениях фасадов с внешней стороны - «никакие особенности не обнаружены»

    аккумуляция тепла на свесах крыш - «крыша плохо изолирована»

    холодные крыши и окна по причине отражения холодного излучения окружающей среды - «крыши и окна лучше изолированы, чем фасады»

    охлаждение фасада под влиянием дождя или ветра - «фасады лучше изолированы, чем другие детали»

    нагрев архитектурных элементов под воздействием солнечных лучей - «архитектурные элементы теряют много тепла»

    геометрически предопределенные тепловые мостики, такие как внутренние углы, чья излучающая площадь больше, чем принимающая (с внешними углами ситуация обратная) определяются как слабые места в постройке.

Для детального исследования элементовконструкции предпочтительней проводить внутреннюю термографию. Здесь нет никаких климатических влияний на обследуемую поверхность. Термические показатели, снятые внутри здания, более-менее соответствуют действительности. Крыши и фасады на предмет их изоляции и непроницаемости можно снимать только с внутренней стороны здания, так как с наружной стороны под воздействием воздушных потоков возможно возникновение ошибок.

Одним из наиболее часто встречающихся явлений, оказывающих вред зданию, являются . Это ограниченные места, которые в сравнении с окружающей их поверхностью имеют повышенную теплопередачу. Они являются не только причиной энергетических потерь, но также приводят к намоканию стен, а как следствие к появлению грибка. Так при определенных обстоятельствах поступающий к холодной архитектурной детали комнатный воздух может остыть до температуры «точки росы».

И вследствие конденсации влага поступает внутрь и приводит к образованию грибка.

Подобный эффект можно встретить при воздухопроницаемости особенно в штукатурке во внешних стенах облегченной конструкции. Теплый комнатный воздух из-за плохой изоляции архитектурных деталей уходит из помещения. При этом теплый воздух, который может содержать много водяного пара, может остыть до температуры процесса конденсации.Особенно большой вред подобное может нанести деревянным элементам конструкции. Проверку на герметичность поэтому, как правило, проводят внутри здания с открытыми внутренними дверями между помещениями.

Наряду с количественным исследованием при определенных условиях может быть проведено качественное термографическое исследование скрытых трубопроводов, утечек в системе отопления или состояния скрытых элементов конструкции. Приэтом используется тот факт, что различное тепловое сопротивление и теплоемкость оказывают влияние на прохождение тепла. Например, тот факт, являются ли объекты источникамитепла или источниками его утечки.

Тепловизоры это устройства, с помощью которых можно контролировать распределение температуры измеряемой поверхности. Эта поверхность изображается на экране прибора в виде цветового поля. На этом поле определенный цвет соответствует некоторой температуре. На экране отображается интервал видимой температуры. Стандартное разрешение тепловизоров последних моделей составляет 0,1 градус.

В недорогих устройствах информация сохраняется в памяти прибора и при необходимости считывается через компьютер. Чаще всего такие приборы используют совместно с ноутбуком и специальной программой, принимающей информацию с тепловизора.

Впервые тепловизоры появились еще в 30-х годах прошлого века. Современные системы тепловизоров стали развиваться только в 60-х годах. Приемники теплового излучения были с одним элементом. Изображение в приемниках осуществлялось с помощью точечного смещения оптики. Такие приборы имели низкую производительность и давали возможность для наблюдения за изменениями температуры с малым быстродействием.

С развитием технического прогресса появились ячейки, способные хранить сигнал света. Стало возможным проектирования новых тепловизоров на базе матриц датчиков. С этих матриц сигналы поступают на дешифратор, далее на обработку в главный процессор прибора.

В определенной последовательности сигналы проецируются на матрицу с распределением температур с разными обозначенными цветами. Такой принцип дал возможность получить портативные автономные устройства, способные оперативно обрабатывать данные, позволяющие контролировать изменение температуры в реальном времени.

Перспективной разработкой новых тепловизоров стало использование неохлаждаемых болометров. Этот принцип основан на повышенной точности вычисления изменения сопротивления тонких пластин под воздействием излучения тепла всего спектра. Эта технология популярна во многих странах при производстве новых тепловизоров, к которым предъявляются высокие требования безопасности и мобильности. В нашей стране изготовление автономных тепловизоров с неохлаждаемыми болометрами начато в 2007 году.

Работа и конструктивные особенности

Излучение инфракрасного цвета фокусируется оптической системой тепловизора на приемнике, который подает сигнал в форме изменения сопротивления или напряжения.
Электроника регистрирует полученный сигнал от системы тепловидения. В результате сигнал преобразуется в электронную термограмму. Она изображается на дисплее.

Термограммой называется изображение объекта, которое прошло обработку электронной системой для отображения ее на экране с различными цветовыми оттенками, соответствующими распределению инфракрасных лучей по площади объекта. В результате оператор видит термограмму, соответствующую излучению тепла, приходящего от исследуемого объекта.

Чувствительность детектора к излучению тепла зависит от его собственной температуры, и качества охлаждения. Поэтому детектор располагают в специальное охлаждающее устройство. Наиболее популярный вид охлаждения – это жидкий азот. Однако этот метод неудобный и довольно примитивный.

Другим видом охлаждения стали . Это полупроводники, способные обеспечить перепад температур при прохождении по ним электрического тока, и действующие по принципу теплового насоса. Чувствительность датчика тепловизора создается с помощью чувствительных полупроводников, выполненных из ртуть-кадмий-теллура, антимонида индия и других материалов.

Части и элементы тепловизора

Стоимость тепловизора довольно высока. Основными его элементами являются объектив и матрица (приемник излучения), которые составляют 90% стоимости всего прибора. Такие матрицы сложны в изготовлении. Объектив невозможно выполнить из стекла, так как стекло не пропускает инфракрасные лучи. Поэтом для объективов используют дорогие редкие материалы (германий). В настоящее время ведутся поиски других недорогих материалов.

Другими составными частями прибора являются:

1 — Крышка объектива
2 — Дисплей
3 — Управление
4 — Ручка с ремнем
5 — Тепловизор
6 — Пуск
7 — Объектив
8* — Электронная система
9* — Память для хранения информации
10* — Программное обеспечение

Объективы

В тепловизоре в обязательном порядке имеется хотя бы один объектив, который способен фокусировать излучение инфракрасных волн на приемнике излучения. Далее приемник подает электрический сигнал и образует тепловое (электронное) отображение, которое называется термограммой.

Чаще всего объективы изготавливают из германия. Чтобы оптимизировать пропускание света объективами, применяют просветляющие тонкопленочные покрытия. В комплект тепловизора обычно входит чехол для хранения и переноски устройства, другого дополнительного оборудования для применения прибора в полевых условиях.

Дисплеи

Отображение картины теплового излучения осуществляется на жидкокристаллическом экране (дисплее). Он должен иметь хорошую яркость и достаточный размер для легкого обзора изображения при различных условиях освещения, в полевых условиях. На экране обычно имеется вспомогательная информация. К ней относится цветовая шкала температур, время, дата, заряд батареи, температура объекта и другая полезная информация.

Схема обработки сигнала и приемник излучения применяются для модификации излучения инфракрасного света в необходимую полезную информацию. Фокусировка теплового излучения объекта осуществляется на специальный приемник. Он изготовлен из полупроводников. Тепловое излучение создает электрический сигнал на приемнике. Далее сигнал поступает на электронную схему, расположенную внутри прибора, после обработки сигнала электроникой, на экране возникает тепловое изображение.

Органы управления

С помощью этих элементов производятся различные настройки электронной системы для оптимизации изображения теплового излучения на дисплее. Такие настройки в электронном виде могут изменить цветовую гамму и слияние изображений, интервал теплового уровня. Также регулируется отраженная фоновая температура и коэффициент излучения.

Хранилище данных

Цифровые электронные данные, которые содержат изображения тепла и вспомогательные данные, могут сохраняться на электронных картах памяти различного типа, либо на устройствах передачи и хранения информации.

Большинство тепловизионных инфракрасных систем способны сохранять вспомогательные текстовые и голосовые данные, а также снимок изображения, которые получены при помощи внутренней встроенной камеры, работающей в спектре видимости человеком.

Создание отчета и программное обеспечение

Программное обеспечение, применяемое с многими современными системами тепловидение, является удобным и функциональным для оператора. Тепловые цифровые и видимые изображения копируются на компьютер или ноутбук. Там эту информацию можно проанализировать с применением разных цветовых палитр, осуществить другие регулировки радиометрических данных.

Также есть возможность применить встроенные опции проведения анализа. Обработанные картинки можно включить в образцы отчетов или отпечатать на принтере. Изображения также можно по интернету отправить заказчику, либо сохранить на компьютере в электронном виде.

Классификация

Тепловизоры делятся на несколько видов по различным признакам.

Наблюдательные преобразуют инфракрасные лучи в видимый для глаза свет по специальной цветовой шкале.

Измерительные тепловизоры способны определять температуру исследуемого объекта путем присвоения величине цифрового сигнала пикселей определенную соответствующую температуру. В итоге образуется изображение распределения температур.

Стационарные тепловизоры служат для использования на предприятиях промышленности, где осуществляется контроль над соблюдением технологических процессов в интервале -40 +2000 градусов. Такие устройства оснащаются азотным охлаждением, чтобы создать нормальные условия для работы приемной аппаратуры. Такие системы состоят из тепловизоров 3-го поколения, выполненных на полупроводниковых матрицах фотоприемников.

Переносные устройства тепловидения разработаны на основе неохлаждаемых кремниевых микроболометров. Вследствие чего появилась возможность отказаться от применения громоздкой и дорогой аппаратуры охлаждения. Такие приборы имеют все преимущества стационарных моделей. При этом их можно использовать в труднодоступных местах. Многие переносные тепловизоры можно подключать к компьютеру для обработки информации.

Часто приборы ночного видения путают с тепловизорами. Однако между ними большая разница. Устройство ночного видения может работать при малой освещенности, так как усиливает свет. Часто попавший в объектив свет ослепляет человека. Для тепловизора не нужен свет, так как его принцип действия основан на тепловых инфракрасных лучах.

Сфера применения тепловизоров

Тепловизоры используются в различных сферах нашей жизни. Так, например эти устройства используются в охране объектов и военной разведке. Ночью человека можно через этот прибор заметить в полной темноте на удалении до 300 метров, а военную технику видно до 3 км.

В настоящее время существуют видеокамеры микроволнового рабочего диапазона с выходом изображения на компьютер. Чувствительность такой камеры несколько сотых долей градуса. Следовательно, если вы взялись за ручку двери ночью, то тепловой отпечаток после этого будет видно около 30 минут.

Большую перспективу имеют тепловизоры в определении дефектов в разных установках. Это имеет место в случае повышения или понижения температуры определенного места механизма, или устройства. Иногда определенные дефекты выявляются только тепловизором. На опорных тяжелых конструкциях (мостах) при усталостном старении металла, возникающих деформациях в некоторых местах выделяется больше тепла, чем положено. Поэтому есть возможность диагностики дефектов без разборки объекта.

В результате можно сказать, что тепловизоры применяются в качестве оперативного контролера безопасности объектов.

Широкое применение тепловизоры нашли в медицине в качестве диагностики патологии различных заболеваний. У здорового пациента температура тела распределена симметрично от средней линии всего тела. Если эта симметрия нарушается, то это является критерием диагностики заболеваний тепловизором.

Термография является современным методом диагностики в медицине. Этот метод основан на обнаружении инфракрасного излучения тела человека в зависимости от его температуры. Интенсивность и распределение излучения тепла в норме определяется своеобразными физиологическими процессами, которые происходят в организме в глубоких и поверхностных органах.

Разные состояния патологии характеризуются несимметричностью распределения температуры тела. Это находит свое отражение на термографической картине. Такой факт имеет важное прогностическое и диагностическое значение. Об этом свидетельствуют многие клинические исследования.

Существуют два главных вида термографии:

  1. Телетермография.
  2. Контактная холестерическая термография.

Телетермография действует на модифицировании инфракрасных лучей от тела человека в сигнал электрического тока, изображающегося на дисплее тепловизора.

Контактная холестерическая термография работает по принципу оптических свойств жидких кристаллов, проявляющихся изменением цвета в радужные цвета при нанесении их на излучающие поверхности. Более холодным местам соответствует синий цвет, а горячим – красный.

Применение в промышленности

  • Контроль процессов обмена тепла в выхлопных системах, двигателях и радиаторах автомобиля.
  • Проверка и проектирование тормозной системы автомобиля.
  • Контроль ультразвуковой сварки.
  • Разработка климатической системы автомобиля.
  • Контроль качества монтажных плат в электронике.
  • Контроль режима сварки.
  • Выявление несоосности валов, подшипников, шестерен.
  • Анализ напряжений металла.
  • Контроль изоляции и герметичности емкостей для жидкостей.
  • Определение свойств теплоизоляции.
  • Выявление потерь тепла в помещениях.
  • Диагностика конструкций ограждений.
  • Предотвращение пожаров.
  • Выявление утечки газа из газопровода.
  • Контроль технологических процессов.
  • Проверка электрооборудования.
  • Проверка работоспособности тепловых трасс.
  • Выявление мест подсоса холодного воздуха.
  • Контроль теплоизоляции трубопроводов.
  • Проверка оборудования с наполнением маслом.
  • Проверка статора генератора.
  • Контроль газо- и дымоходов.