Интересные факты        15.07.2023   

Защита от перенапряжения в частных домах. Защита электрических сетей от перенапряжения Причины срабатывания реле

Защита от перенапряжения - это функция источника питания, которая отключает оборудование, когда напряжение превышает заданный параметр. Перенапряжения могут возникать в самом источнике или в распределительных сетях и длиться всего несколько миллисекунд, однако даже столь недолговременное проявление электромагнитных воздействий на бытовые приборы губительно, особенно для электронного оборудования, содержащего полупроводниковые компоненты.

Причины возникновения аварийных ситуаций в бытовой электросети

Основные факторы перегрузок в сети 220 и 380 Вольт:

  • грозовые разряды, молнии - самые высокоэнергетические явления на Земле;
  • неправильная эксплуатация оборудования и низкий уровень квалификации персонала электросети;
  • нарушение правил техники безопасности при эксплуатации электроустановок, в результате чего у потребителя будет не 220 В, а 380 В или менее 110 В;
  • искра статического электричества;
  • обрыв нулевого провода;
  • импульсное напряжение из-за попадания грозы в линию электропередач;
  • перепады тока в сети из-за одновременного включения большого количества приборов и оборудования.

Последствия перенапряжения в сети

Воздействие состояния перенапряжения может полностью вывести из строя электрооборудование, вызывать сбои в работе устройств, привести к пожарам, а порой и к взрывам. По количеству случаев второе место в стране занимают пожары, вызванные перенапряжениями в сети, когда ток мгновенно растет до сотни тысяч ампер, резко выделяется огромное количество тепла в электропроводке или приборах, с последующим воспламенением их изоляции или пластмассовых изделий.

Перепады напряжения губительно влияют на все бытовые электроприборы, защитить их можно только применяя специальное устройство защиты от перенапряжения.

Виды защитных устройств

Для борьбы с сетевыми перепадами напряжения существует много различных устройств, которые легко установить самостоятельно. Изделия помогают максимально эффективно защитить свой дом и близких людей от аварийных ситуаций, вызванных перенапряжением сети.

Существует несколько видов защитных устройств от перенапряжения:

  1. Стабилизатор напряжения - контролирует размер сетевого напряжения.
  2. Источник бесперебойного питания (ИБП) - устройство аварийного поддержания работоспособности оборудования при отключении основного источника, выполнен по принципу резервного аккумулятора. ИБП все же отличается от автономной системы питания, так как обеспечивает молниеносную защиту, питая прибор от энергии батарей. Время аварийной работы ИБП очень короткое (несколько минут), но этого достаточно для запуска другого источника или правильного отключения приборов от сети.
  3. Автоматический выключатель - электрическое устройство с функциями, аналогичными функции плавкого предохранителя. Защита от перенапряжения сети самых простых выключателей обеспечивается соленоидом, который активируется чрезмерным увеличением тока. Малые автоматические выключатели широко используются вместо плавких предохранителей для защиты электрических систем в домах и квартирах.
  4. Сетевой фильтр - защитное устройство со встроенной электронной схемой защиты от импульсных, низко- и высокочастотных сетевых помех путем их сглаживания.
  5. Ограничитель перенапряжения нелинейный (ОПН) — устройство, защищающее оборудование от коммутационных перенапряжений и молний, является лучшим средством защиты.
  6. Трансформаторы (понижающие и повышающие) - изменяют напряжение до рабочего, когда в сети наблюдается регулярная просадка или подъем напряжения, из-за чего приборы не могут функционировать в полную силу.
  7. Устройства защитного отключения (УЗО) - наиболее распространенные средства защиты людей от опасности удара электрическим током при касании устройств и оборудования под напряжением, а также для защиты от пожара, вызванного токами утечки. Другие средства защиты эти функции выполнять не могут, так как реагируют только на перегрузку сетей.

Источники возникновения импульсных помех

Импульсная помеха (ИП) создается мгновенным всплеском напряжения в электросети с амплитудой более 4-6 тыс. В. ИП бывают в виде одиночного или множества (пачки) чередующихся импульсов. Это самая распространенная «болезнь» электросетей и наносит непоправимый вред электронным компонентам бытовой техники. Защита от ИП — питание оборудования с помощью сетевых фильтров. Другие системы защиты электрооборудования практически не настроены на защиту от ИП, поэтому не могут ее обеспечить.

Различают источники ИП:

  1. Природные источники — удары молний поблизости с электросетями (воздушными или подземными), зона действия до 20 км.
  2. Техногенные источники — процессы коммутации в период оперативного управления системами электропередач (включения/выключения) и аварийных ситуаций на трансформаторных подстанциях.

Согласно оперативным данным, наиболее часто встречаются ИП техногенного характера, что объяснимо уровнем изношенности сетей и большой потребительской нагрузкой.

Классы безопасности оборудования по защите от ИП

В зависимости от мощности импульса, оборудование по защите от ИП делится на классы:

  • молниезащита - 0 (А);
  • вводный щит для сооружения I (B);
  • электрощиты для помещений - II (C);
  • оборудование по ГОСТ- III (D).

Устройство защиты от импульсных перенапряжений (УЗИП)

Различают УЗИП - варисторы и разрядники различных конструкций, обычно имеющие индикаторы, подающие сигнал об отключении. Варисторы обладают определенными недостатками: после срабатывания они должны остыть, что снижает уровень готовности грозозащиты при неоднократных ударах молний. Они крепятся на DIN-рейку, поэтому их легко заменить в случае необходимости.

Защита от перенапряжения и надежность применения устройства зависит от эффективности заземления с равными потенциалами TN-S или TN-CS, разделением защитного и 0-провода. УЗИП устанавливают с шагом 10 м по кабелю, чем обеспечивается расчетная последовательность срабатывания УЗИП.

На воздушных линях УЗИП устанавливается из разрядников и плавких вставок, в общем домовом щитке — варисторы кл. I, II, а на этажах — III кл. При необходимости дополнительной защиты розетки оборудуют в виде сетевых удлинителей.

Устройство защиты от скачков напряжения 220 вольт для дома

Защита от перенапряжения 220 В - это та задача, которую придется решать самим: думать головой и собирать защиту собственными руками. Современная бытовая и вычислительная техника безопасно работает от 190 до 240 В. Скачок напряжения создает разрушительные последствия для техники, когда напряжение мгновенно увеличивается в разы и резко падает.

Наиболее распространенные причины перенапряжения:

  • одновременное отключение/включение большого количества приборов;
  • повреждение 0-провода;
  • попадание молнии в ЛЭП;
  • обрыв провода внешним объектом;
  • нарушения схемы подключения проводов в щите.

Промышленность выпускает большой список приборов, способных достаточно надежно обеспечить защиту от перенапряжения сети 220 В, бытовых приборов - от повреждения и высоких параметров сети:

  1. РКН (реле контроля напряжения) устанавливаются, когда перепады напряжения - явление редкое. РКН - прибор, отключающий электрическую цепь при изменении разности потенциалов и включающий, когда параметры сети нормализуются, должен иметь собственную мощность, превышающую общую мощность подключенного оборудования.
  2. ДПН (датчик перепадов напряжения) срабатывает при изменении разности потенциалов. ДПН вызывает утечку тока, ее обнаруживает уже другой автомат - УЗО, он же и отключает сеть.

Стабилизаторы напряжения

Для нормальной эксплуатации электрического оборудования напряжение должно поддерживаться в диапазоне от 190 В и до 240 В. Защита от импульсных перенапряжений происходит при превышении допустимых параметров, например вызванных сварочными работами, выполняемыми недалеко от дома, или появлениями тока короткого замыкания в общей домовой электросети. В этом случае стабилизатор мгновенно отключает электричество. После стабилизации сети защитное устройство самостоятельно подает напряжение на приборы потребителя.

Сетевые фильтры

Если фильтр не может справиться с помехами, то он отключает питание встроенным предохранителем. Защита от перенапряжения применяется для бытовых многоуровневых компьютерных сетей. Схема сетевого фильтра обеспечивает один из самых простых, дешевых и эффективных способов защиты от перенапряжения. Обычно это связано с регулируемым выходом и защищенным контуром или нагрузкой. СФ, функционирующие на базе транзистора, управляют выходным током и напряжением. Устройство защиты отключает оборудование, когда напряжение превышает заданное значение.

Защита от перенапряжения с использованием разрядников

Грозовые, квазистационарные и коммутационные перенапряжения воздействуют на работоспособность электрооборудования. Основные защитные устройства — РВ (вентильные разрядники) и ОПН (нелинейные ограничители перенапряжений). Надежность их работы зависит от:

  • Выбора числа устройств, их параметров и места расположения.
  • Внутренней защиты от перенапряжений самого разрядника, который не защищен от такого вида воздействия.
  • Испытаний в нормальных условиях, они не должны пробиваться.

Разрядники для защиты от перенапряжений (варистор) состоят из резистора и искрового просвета, соединенных последовательно. Такая схема подключения меняет характеристики во влажной среде, поэтому их герметично закрывают. Этот вид разрядников срабатывает бесшумно и не дает выбросов газа и пламени.

Явление перенапряжения в наших сетях не редкость, системы электроснабжения устарели, так как не рассчитаны на современный возросший бытовой уровень жизни потребителей. Раздувшиеся нагрузки потребления электричества разрушают изношенные сети, в результате чего перепады напряжения случаются все чаще и чаще.

Подводя итог, следует сказать, что методы защиты от перенапряжения, конечно, рассчитаны на защиту от поражения высоким напряжением оборудования и людей, но не дают гарантии на 100%. Во время грозы и коммутационных явлений в сети лучшая защита всегда — это полное отключение от электросети дорогостоящего оборудования.

Скачки напряжения распространены в бытовых электросетях. Регулярные сбои параметров сети приводят к быстрому выходу из строя домашней техники. А это уже является прямой угрозой для организма человека.

Перенапряжение – состояние электросети, при котором напряжение выходит за лимиты рабочего. Допустимый диапазон для электросетей 0, 38 кВ: 0,198..0,242 для однофазных, 0,342..0,418 для трехфазных. Т.е. отклонение колеблется в пределах 5-10% на вводах к потребителям.

Причины возникновения

Причины возникновения перенапряжений в сети:

  1. Удары молнии. При этом по проводам течек ток, с импульсными напряжениями в несколько десятков тысяч вольт.
  2. Ошибки операторов при обслуживании оборудования на питающих подстанциях. Случается из-за несогласованности регулирования напряжения на ПС.
  3. Неправильное соединение проводов в щитовой. Происходит, когда на ноль, подключают фазу.
  4. Нарушение в нейтрали. Возникает при обрывах или обгорании проводника. Является самой распространённой причиной возникновения перенапряжений в бытовых сетях. При разрыве, не происходит перекос фаз, чем и вызываются скачки напряжений.

Опасность для электроприборов

Бытовая техника рассчитывается на присутствие скачков электроэнергии, превышающих рабочие значения в три раза (до 1000 В). Если происходит аварийная ситуация, то значение скачков может превышать предельно допустимые нормы. При этом происходит перегрев кабелей, пробой изоляционной оболочки, и как следствие искрение и возникновение пожаров. КЗ могут возникать даже на участках электросети без нагрузки.

Защита от импульсных перенапряжений

Мерами безопасности являются УЗИП (устройства защиты от импульсных перенапряжений).

Различают два вида:

  1. Полная. Предусматривает устройство приборов на вводе в квартиры, а также перед каждым бытовым электроприбором.
  2. Частичная. В этом случае аппараты устанавливаются только в электрощитовой.

Современные меры безопасности УЗИП

Виды защит от перенапряжения:

  • Реле. Производит аварийное отключение бытовых приборов при достижении электросетью критических параметров и автоматическое включение после нормализации напряжения.

Используются для защиты всей сети, так и для каждого электроаппарата в отдельности.

  • Стабилизаторы напряжения – .
  • Современные модели устроены на микропроцессорной базе, имеют дисплей и многофункциональный интерфейс. Совместное использование УЗО и ДПН (датчика повышенного напряжения). Последний прибор осуществляет мониторинг параметров сети, а УЗО производит аварийное отключение.

Устройства, предназначенные для:

  • мониторинга симметрии напряжения в бытовых электросетях;
  • предотвращения асимметрии нагрузки;
  • правильность последовательности фаз в трехфазных сетях.

Применяются в системах с автоматическим управлением.

Импортное оборудование очень требовательно к качеству электросетей. Отсутствие надлежащих мер контроля электричества приводит к быстрому износу и полному выходу из строя электроаппаратов. Реле контроля фаз также предназначено для стабилизации параметров питающей сети.

Преимущества:

  1. работа на микропроцессорной базе;
  2. высокая точность показаний и надёжность;
  3. простота конструкции.

Принцип работы основан на явлении самовозврата параметров. При подаче напряжения устройство осуществляет контроль. Происходит аварийное отключение, когда возникают сбои.

Места установки :

  • для защиты отдельно стоящего оборудования или группы электроустановок непосредственно перед розеткой;
  • для общедомовой защиты на DIN-рейку вводно-распределительного устройства.

При одновременном пропадании нескольких фаз, устройство срабатывает без задержки во времени.

Устройство автоматического ввода резервного питания

Причины срабатывания реле:

  1. перекос фаз;
  2. несоответствие подключение фазных проводов;
  3. обрыв фазного кабеля.

Типы стабилизаторов

Различают феррорезонансные, симисторные, релейные стабилизаторные электроприборы и сервоприводные стабилизаторы.

Феррорезонансные

В системе трансформатор-конденсатор использует эффект феррорезонанса. Выполняют стабилизацию параметров в выбранном диапазоне нагрузок. Малораспространенный тип из-за сложностей внедрения в бытовые системы электоснабжения и высокой стоимости.

Преимущества:

  • точность срабатывания;
  • длительный срок эксплуатации;
  • быстродействие;
  • надёжность работы.

Недостатки:

  • громоздкость;
  • искажение синусоидальности;
  • малый диапазон нагрузок;
  • невозможность работы в режиме ХХ и перегрузе.

Симисторные

Принцип действия – срабатывание сигнала по релейному типу. Разъединение цепи осуществляется симисторами.

Преимущества:

  • при получении сигнала стабилизаторы способны к быстрому коммутированию;
  • отсутствие шума;
  • плавность регулировки.

Недостатки :

  • завышенная стоимость;
  • ступенчатая регулировка.

Релейные

Используются для предохранения электроаппаратов малой мощности. Прибор включает в себя силовое реле и автотрансформатор. При изменении параметров внешней сети происходит срабатывание релейного элемента и переключение обмоток автотрансформатора.

Преимущества :

  • быстродействие.

Недостатки :

  • ступенчатость регулировки;
  • невысокая точность срабатывания;
  • искажение синусоидальности.

Сервоприводные

Устроены по схеме реостата. Электропривод при изменениях параметров электросети перемещает подвижные контакты на обмотке автотрансформатора до необходимого положения.

Преимущества:

  • высокая чувствительность электроприбора к нарушению параметров сети;
  • отсутствие синусоидальных искажений;
  • плавность управления.

Недостатки :

  • низкая надёжность;
  • медленное срабатывание электроники.

Автоматический стабилизатор напряжения

Работа в сетях 220 В

Монтаж выполняется в соответствии с требованиями электробезопасности – без нагрузки. Присоединение в цепь выполняют непосредственно после счётчика. Соединение фазного провода – с разрывом.

В устройстве имеется три контакта:

  • Ноль. Нейтраль подключается без разрыва.
  • «Вход». На этот контакт присоединяется провод, идущий от вводного автомата.
  • «Выход». Присоединяется к отходящему на потребителей проводнику.

В случае четырёхконтактного подключения схема аналогична. Фазные жилы и нейтраль, идущие от главного автомата, присоединяются путём разрыва на стабилизатор.

  • Не реже 1 раза в год необходимо проводить осмотр.
  • При работе приборы не производят звуков. Посторонние шумы говорят о нестабильности работы.

После установки производится пробное включение – без нагрузки. Если происходит отключение сети, то монтаж выполнен с ошибками.

Существуют переносные стабилизирующие устройства. Представляют собой короб с вилкой и несколькими розетками для подключения электроприборов. Являются переходниками между питающей сетью и нагрузкой.

Работа в сетях 380 В

Эксплуатация стабилизаторов в сетях 380 В:

  • Стабилизаторы должны следить за равномерностью распределения тока по фазам.
  • Применение трехфазных устройств необходимо в тех случаях, когда в сети 380 Вольт будут использоваться электродвигатели.
  • Как правило, все потребители 220В, поэтому целесообразно применять комплект из 3 однофазных стабилизаторов. При выходе из строя одного из трёх устройств, подача электричества не прекратится, в отличие от случая с трехфазным. Замена вышедшей из строя фазы обойдётся в 3 раза дешевле.

При выборе стабилизирующего аппарата необходимо учитывать: стоимость оборудования, срок эксплуатации, быстродействие, удобство интерфейса, устройство регулировки, характеристику нагрузки бытовой сети.

Место установки защитных устройств

Приборы устанавливают в специально оборудованных помещениях – электрощитовых. Если такого нет, то местом установки могут стать тамбуры, кладовые, подсобки. Главное условие для комнаты – обеспечение качественной вентиляции.

При установке стабилизаторов в утопленные полки и ниши, необходимо отступить от стен на 10 см для исключения перегрева соседних поверхностей. Также рядом не должно быть легковоспламеняющихся материалов – пластиковых панелей, синтетических штор и т. д.

Выбор стабилизирующих устройств

Подбор стабилизаторов:

  • По типу сети. На жилые дома с трехфазной электросетью устанавливается минимум один комплект для трехфазной нагрузки.

Однофазный устанавливают для потребителей, запитанных от сети

  • По мощности. Характеристика прибора должна быть на ступень выше, отпущенной потребителю нагрузки. Для таких случаев следует учесть нагрузку всех защищаемых электроустановок.

В расчётах используют полную мощность, учитывающую (актив и реактив).

  • Значение пускового тока. Учитывается при выборе защитных устройств как холодильники, насосы и другие, т. е. те, схема которых содержит асинхронные двигатели. Для этих аппаратов стабилизаторы выбирают с запасом до 25%.

Для защиты устройств электроосвещения используются стабилизаторы с точностью не менее 3%. Именно с этого значения можно зафиксировать мерцание ламп.

Стоит ответить на вопрос, что лучше один стабилизатор на дом или несколько для каждого электроприбора?

Для маломощных систем подходит схема установки одного комплекта на вводе. Такой способ защиты экономически оправдан.

Если предполагается использование большого количества электроустановок, то целесообразно ставить защиту на каждый прибор или на группу с учётом важности и экономической целесообразности.

ИБП используют для подключения дорогостояще техники: телевизоры, холодильники, компьютеры и т. д.

Установка реле напряжения. Видео

Каким образом осуществляется установка реле от защиты от перенапряжения, рассказывает это видео.

При проектировании электроснабжения жилого дома следует особое внимание уделить защите сети от перенапряжений. Применение комплексных мероприятий позволяет снизить риск аварийной ситуации до минимума. Также следует не забывать об элементарных правилах использования и содержания электроприборов. Это не только защищает жизнь людей, но и экономит средства на последующие ремонт и замену испорченного электрооборудования.

Предназначено для защиты электрооборудования потребителей от длительных перепадов напряжения, в основном связанных с обрывом нейтрального провода, нарушающих параметры работы электрической сети. Это долговечное, удобное для монтажа и эксплуатации устройство.

Важные разъяснения сделала Судебная коллегия по гражданским делам Верховного суда РФ, когда пересматривала итоги спора нескольких граждан с энергетической компанией. У людей из-за скачка напряжения в сети испортилась вся домашняя техника - холодильники, телевизоры, компьютеры и прочее имущество.
Подобные ситуации - перепады напряжения в электросетях - нередки, а ущерб от скачка тока может быть весьма ощутимым для домашней аппаратуры. Поэтому разъяснения самых опытных судей страны могут быть полезны не только профессионалам, рассматривающим такие иски, но и рядовым обывателям.

Вопрос защиты от перенапряжения всегда будет актуален для любого типа жилых и нежилых сооружений. И не важно, деревянный дом или железобетонные стены квартиры, хрущевка или новостройка. Как электрику со стажем, несколько раз приходилось видеть последствия данного "феномена", зрелище не очень приятное. Это действительно может привести к пожару, т.к. практически вся современная техника находится в режиме "ожидания", т.е. фактически включена постоянно. Подробно о перенапряжении можно узнать . Так вот, что касается устройств УЗИС. Читаем выдержку :
"9.22 Проверка защиты при перенапряжении в результате обрыва нейтрали в трехфазной системе
В результате обрыва нейтрали в трехфазной системе установки может произойти перенапряжение между фазой и нейтралью. Максимальное значение такого перенапряжения может достигать межфаз-ного напряжения. Аномальное повышение температуры в нагрузке перенапряжения может вызвать
пожар.
УЗДП должны содержать дополнительную характеристику, обеспечивающую защиту в этом слу-чае. Вопрос о такой характеристике — в стадии рассмотрения."
В принципе, то большинство данного типа устройств оснащены защитой от перенапряжения, что конечно же радует.

Устройство защиты многофункциональное УЗМ-50Ц предназначено для отключения оборудования при выходе сетевого напряжения за допустимые пределы в однофазных сетях, защиты подключённого к нему оборудования (в квартире, офисе и пр.), от разрушающего воздействия импульсных скачков напряжения, вызванных срабатыванием близкорасположенных и подключённых к этой же сети электродвигателей, магнитных пускателей или электромагнитов, тем самым предотвращая выход оборудования из строя и возможное возгорание с последующим пожаром. Устройство обеспечивает контроль напряжения сети и причин срабатывания.
После подачи питания либо после аварийного отключения, включение устройства происходит автоматически после восстановления сетевого напряжения через время задержки устанавливаемое пользователем. Устройство может применяться в сетях любой конфигурации; TN-C, TN-S, TN-C-S, ТТ. Устройство не заменяет другие аппараты защиты (автоматические выключатели, УЗИП, УЗО и пр.).

Перенапряжения - это нарушения в нормальном режиме работы электросети, связанные с увеличением напряженности электрического поля до значений, опасных для элементов электроустановок и проводящих линий. В момент перенапряжения на номинальное сетевое напряжение накладывается мгновенный импульс или дополнительная волна напряжения. Такие явления могут стать причиной повреждения изоляции и вызвать пожар, могут создать серьезную угрозу для работоспособности оборудования, а порой и для жизни и здоровья людей. Перенапряжения имеют разную природу. Однако современное защитное оборудование позволяет нейтрализовать последствия всех видов нарушений в работе сети.

В бытовых условиях (жилых многоквартирных домах), как и в большинстве распределительных сетей, используется трехфазное питание. Специфика заключается в том, что фазы распределяются по квартирам и имеют общий нулевой проводник. Реже встречается трехфазное питание. Как правило, без него не обойтись в коттеджах или квартирах премиум класса площадью 200 кв.м. где порог потребляемой мощности превышает 14кВт. Квартиры же эконом и среднего класса площадью до 100-150 кв.м как правило запитываются однофазным питанием: это трехфазное питание, при котором каждая фаза заходит в отдельную квартиру с общей нейтралью.

Нейтральный провод играет роль балансира между фазами. Иными словами, если нагрузка между фазами не сбалансирована, то нейтральный провод этот дисбаланс нейтрализует. Нейтральный провод не нужен в том случае, если нагрузка равномерна, но на практике такого не происходит.

Корректная работа бытовых приборов и оборудования, а также их долговечность зависят от напряжения сети, которое является стандартным и регламентируется ГОСТом. Однако по многим причинам оно может отклоняться от заданных параметров, тем самым оказывая негативное влияние на срок эксплуатации электроизделий. Сохранить функциональность техники поможет реле напряжения.
Прибор управляется микроконтроллером, который анализирует напряжение в электросети и отображает его действующее значение на встроенном дисплее. Коммутация нагрузки осуществляется электромагнитным реле. Допустимые пределы отключения и время задержки включения устанавливаются пользователем с помощью кнопок на лицевой панели. Значения сохраняются в энергонезависимой памяти.
Реле напряжения монтируется на DIN-рейку и устанавливается в распределительном шкафу бытового и промышленного применения. Позволяет контролировать напряжение большого количества потребителей.

ВОПРОС:

Добрый день. Приобрел реле контроля напряжения RM17UBE15. Подключаю фазу(L) на А1(+) и контакт №11, ноль(N) подключаю к А2(-). Вижу напряжение на контакте №12, тогда как при нормальной работе реле я должен видеть напряжение на контакте №14. Настройки по напряжению выставлены расширенные 80<260, замер реального напряжения в сети произвел (223V). Так же наблюдаю мигающую индикацию Un и R, тогда как подобной ситуации нет в инструкции к устройству. Прошу помощи.

Могут вылезать из строя бытовые приборы: электрические лампочки, различные нагревательные приборы, электродвигатели холодильников и других приборов, радиоаппаратура и т.д.Предлагаю автомат, который контролирует состояние электрической сети и автоматически отключает и выключает нагрузку. Нагрузка будет включаться в работу только при нормальном состоянии электрической сети.Пороговая схема запитывается от сети через гасящие резисторы R3, R4 и диоды VD1...VD4. Стабилитрон VD8 служит для стабилизации напряжения питания схемы. Изменяющееся напряжение сети поступает через диодный мостик VD1...VD4 на делитель R1, R2. С движка резистора R2, который устанавливает напряжение срабатывания устройства, управляющее напряжение подается через диод VD5 на базу транзистора VT1. Реле поворотов на тиристоре схемы Стабилитрон VD6 служит для защиты транзистора от больших напряжений. При напряжении в сети больше нормы, напряжение на базе транзистора повышается, он открывается и включает реле К1. Контакты К1.1 замыкаются, срабатывает реле К2 и отключает контактами К2.1 нагрузку.После восстановления напряжения в электрической реле К1 обесточивается, отключает реле К2, которое контактами К2.1 включает нагрузку.Светодиоды VD10, VD12 служат для индикации состояния устройства.Реле К2 - любое с рабочим напряжением обмотки 220 В, К1 -также любое из серии РЭС-9.Налаживание устройства сводится к установке резистором R2 напряжения срабатывания автомата.Н. Басенков, г. Добруш...

Для схемы "УСТРОЙСТВО ЗАЩИТЫ ОТ ПЕРЕНАПРЯЖЕНИЯ"

Бытовая электроникаУСТРОЙСТВО ЗАЩИТЫ ОТ А.ПАКАЛО, 340074, Украина, г.Донецк-74, ул. Волго-Донкая, 7"г" - 5, тел.22-26-93.Предлагаю простое устройство, которое в случае аварии электросети защитит телевизор, видеомагнитофон, холодильник и т.д. от перенапряжения. Как правило, при аварии в сети присутствует напряжение 380 В (действующее значение), приносящее все неприятности. При подобной ситуации устройство защиты от перенапряжения срабатывает, создавая короткое замыкание. "Выбитые" пробки (плавкие или автоматические) прекращают подачу электроэнергии в квартиру.Схема устройства приведена на рисунке.Напряжение срабатывания защиты приближенно равно 255 В.В реальности напряжение срабатывания несколько больше из-за наличия в пороговой цепи резистора R1. Этим резистором можно в некоторых пределах изменять напряжение срабатывания. В авторском варианте Ucp=270 В. К174КН2 микросхема Конденсаторы С1 и С2 образуют с R1 RC-цепочку, которая препятствует срабатыванию устройства при импульсных выбросах в сети Схема работает следующим образом. При напряжении в до 270 В стабилитроны VD3, VD4 закрыты. Также закрыты и тиристоры VS1, VS2. При превышении действующего значения напряжения более 270 В открываются стабилитроны VD3, VD4, и на управляющие электроды тиристоров VS1, VS2 поступает открывающее напряжение. В зависимости от полярности подупериода сетевого напряжения, ток проходит либо через тиристор VS1, либо через VS2. Когда ток превышает 10 А, срабатывают автоматические выключатели (пробки), обезопасив электроприборы от перегорания.Настраивать устройство не требуетсяБез конденсаторов С1 и С2 пора срабатывания не превышает одного полупериода напряжения сети, однак...

Для схемы "Автомат защиты от перенапряжения"

Предлагаемый автомат отключает нагрузку и отключается сам при напряжении в больше предельно допустимого и при периодическом его пропадании ("моргании" света).При нажатии кнопки SB1 "Вкл" на реле К1 поступает сетевое напряжение через контакты К2.1 с разъема Х1. Реле срабатывает и самоблокируется контактами К1.1. Через контакты К1.2 сетевое напряжение поступает через диод VD5 на делитель R3-R4, на разъем Х2 "Нагрузка" и на трансформатор Т1, который служит для питания самого автомата. С движка резистора R4, который устанавливает напряжение срабатывания устройства, управляющее напряжение подается через диод VD6 на базу транзистора VT1. Стабилитрон VD7 служит для защиты транзисторов от больших напряжений. При напряжении в больше нормы, напряжение на базе составного транзистора VT1-VT2 повышается, он открывается и включает реле К2. Простой регулятор тока Контакты К2.1 размыкаются, реле К1 обесточивается и отключает контактами К1.2 нагрузку и сам автомат. При кратковременном пропадании напряжения в также разблокировывается реле К1 и отключает нагрузку. Для включения требуется снова нажать кнопку SB1. Светодиоды VD3 и VD4 служат для индикации состояния устройства.Реле К1 - любое с рабочим напряжением обмотки 220 В, К2 - также любое из серий РЭС-9, РЭС-22 с напряжением срабатывания на 2...3 В ниже питающего напряжения.Т1 - сетевой, малогабаритный, с напряжением на вторичной обмотке 12...15 В.Налаживание сводится к установке резистором R4 напряжения срабатывания автомата.А.Лысунец, п.Возжаевка, Амурской обл....

Для схемы "Защита телефонной линии"

Для схемы "Индикация подключения электроприборов к сети 220 В"

Для схемы "ЗАЩИТА ИМПОРТНЫХ ТЕЛЕФОННЫХ АППАРАТОВ"

Для схемы "ЗАЩИТА РЭА ОТ БРОСКОВ НАПРЯЖЕНИЯ"

Для схемы "Защита аппаратуры от повышенного сетевого напряжения при помощи инте"

Для схемы "Сигнализатор уровня напряжения в сети"

Импортные телефонные аппараты и трубки в основном рассчитаны на телефонную сеть с напряжением 48 В. В сетях СНГ с напряжением 60 В они часто выходят из строя. Для снижения напряжения питания автор использует устройство, приведенное на рисунке.В качестве ограничителя используются стабилитроны VD1, VD2 типа Д814Д и резистор R1 типа МЛТ 0,5 Вт. Сопротивление резистора может меняться от 51 до 150 Ом в зависимости от длины линии.Устройство монтируется внутри телефонного аппарата, телефонной вилки или розетки.Литература 1. Кизлюк А. И. Справочник по устройству и ремонту телефонных аппаратов зарубежного и отечественного производства.... Содержание:

В современных условиях постоянно растет потребление электрической энергии. Это связано с появлением у населения большого количества компьютеров, кондиционеров, различной электронной аппаратуры и другой бытовой техники. Большинство этих приборов обладает повышенной чувствительностью, поэтому все более актуальной становится защита от перенапряжения сети. Оно представляет серьезную опасность для электрооборудования, находящегося в постоянном подключенном состоянии. Для того, чтобы избежать серьезного материального ущерба, необходимо точно знать причины перепадов напряжения и основные методы борьбы с этим явлением.

Отчего в сети возникает перенапряжение

Чаще всего перепады напряжения в сети возникают в результате аварий или неравномерного потребления электроэнергии. В таких ситуациях возникает повышенное напряжение, при котором вся домашняя аппаратура вынуждена работать в течение определенного времени. Такие условия эксплуатации приводят к ускоренному износу бытовых приборов. Они могут полностью выйти из строя и стать причиной возгорания.

Наиболее распространенные причины перенапряжения сети

  • Как правило, к одной сети производится подключение большого количества различных объектов, в том числе и промышленных предприятий. При одновременном включении бытового и производственного оборудования вполне возможны скачки напряжения.
  • В жилых домах может произойти нулевого провода. В результате, на линии, питающей розетки, появляется избыточное напряжение. Вместо напряжения фаза-ноль, составляющего 220 вольт, появляется напряжение фаза-фаза, с напряжением уже в 380 вольт.
  • Нарушения работы сети часто происходят из-за неграмотных и безответственных действий электрика, а также, так называемых домашних мастеров, не имеющих знаний в электротехнике. При выходе из строя проводов, они неправильно проводят подключение. Таким образом, высокое напряжение может появиться в любой квартире и вывести из строя всю технику.
  • Серьезную угрозу представляют грозовые разряды около линий электропередачи. Их действие передается по сети и разрушает все включенные приборы.

Чтобы не допустить последствий от воздействия перенапряжения нужно заранее принять меры и обезопасить свое жилье.

Как защититься от действия перепадов напряжения

Прежде всего, для обслуживания и ремонта электрических сетей должны привлекаться специалисты, хорошо разбирающиеся в электротехнике. Это позволит значительно снизить опасность появления перепадов напряжения, вызванных неправильными действиями.

В быту следует применять стабилизаторы напряжения. Они являются идеальным вариантом для защиты дорогостоящей аппаратуры, выдавая напряжение высокого качества. При работе на компьютерной технике лучше всего использовать источники . Они помогут сохранить ценную информацию в случае проблем с напряжением в сети.

Хороший защитный эффект дает одновременное использование и датчиков превышения напряжения (ДПН). Этот способ считается наиболее простым и доступным для населения. С помощью УЗО производится отключение сети при пробое или утечке тока. Оно устанавливается во всех новых и реконструируемых электрических сетях. В зависимости от типа, УЗО могут быть электромеханическими и электронными.

Датчик ДПН представляет собой устройство, которое применяется, когда необходима защита от перенапряжения сети. Его конструкция позволяет работать вместе с любыми типами устройств защитного отключения. ДПН могут работать при токах утечки от 10 до 300 мА, применяются в трехфазных и однофазных сетях. При появлении в сети перенапряжения датчик подает сигнал на УЗО для своевременного отключения потребителей. В результате, скачки напряжения совершенно не действуют на бытовую технику. В дальнейшем, питание восстанавливается обычным включением УЗО.